TMDL For Low pH in the **Big Black River** Big Black River Basin Madison & Yazoo Counties, Mississippi Prepared by Mississippi Department of Environmental Quality MDEQ P.O. Box 10385 Jackson, MS 39289-0385 (601) 961-5171 **Office of Pollution Control** TMDL/WLA Section of the Water Quality Assessment Branch ## **FOREWORD** This report has been prepared in accordance with the schedule contained within the federal consent decree dated December 22, 1998. (Sierra Club v. Hankinson, No. 97-CV-3683 (N.D> Ga.)) The report contains one or more Total Maximum Daily Loads (TMDLs) for waterbody segments found on Mississippi's 1996 Section 303(d) List of Impaired Waterbodies. Because of the accelerated schedule required by the consent decree, many of these TMDLs have been prepared out of sequence with the State's rotating basin approach. The segments addressed are comprised of monitored segments that have data indicating impairment. The implementation of the TMDLs contained herein will be prioritized within Mississisppi's rotating basin approach. The amount and quality of the data on which this report is based are limited. As additional information becomes available, the TMDLs may be updated. Such additional information may include water quality and quantity data, changes in pollutant loadings, or changes in landuse within the watershed. In some cases, additional water quality data may indicate that no impairment exists. #### Prefixes for fractions and multiples of SI units | Fraction | Prefix | Symbol | Multiple | Prefix | Symbol | |------------------|--------|--------|-----------|--------|--------| | 10 ⁻¹ | deci | d | 10 | deka | da | | 10^{-2} | centi | c | 10^{2} | hecto | h | | 10^{-3} | milli | m | 10^{3} | kilo | k | | 10^{-6} | micro | μ | 10^{6} | mega | M | | 10-9 | nano | n | 10^{9} | giga | G | | 10^{-12} | pico | p | 10^{12} | tera | T | | 10^{-15} | femto | f | 10^{15} | peta | P | | 10^{-18} | atto | a | 10^{18} | exa | E | #### **Conversion Factors** | To convert from | To | Multiply by | To Convert from | To | Multiply by | |-----------------|-----------|-------------|-----------------|---------|-------------| | Acres | Sq. miles | 0.0015625 | Days | Seconds | 86400 | | Cubic feet | Cu. Meter | 0.028316847 | Feet | Meters | 0.3048 | | Cubic feet | Gallons | 7.4805195 | Gallons | Cu feet | 0.133680555 | | Cubic feet | Liters | 28.316847 | Hectares | Acres | 2.4710538 | | cfs | Gal/min | 448.83117 | Miles | Meters | 1609.344 | | cfs | MGD | .6463168 | Mg/l | ppm | 1 | | Cubic meters | Gallons | 264.17205 | μ g/l * cfs | Gm/day | 2.45 | # **CONTENTS** | <u>FORI</u> | EWORD | <u>II</u> | |-------------|---|-----------| | | | | | CONT | TENTS | TTT | | CON | TEN1S | III | | MON | NITORED SEGMENT IDENTIFICATION | ${f v}$ | | MON | ITOKED SEGWENT IDENTIFICATION | V | | EXE(| CUTIVE SUMMARY | VI | | | | | | INTR | RODUCTION | 1 | | 1.1 B | BACKGROUND | 1 | | 1.2 A | APPLICABLE WATERBODY SEGMENT USE | 2 | | 1.3 A | APPLICABLE WATERBODY SEGMENT STANDARD | 2 | | TMD | L ENDPOINT AND WATER QUALITY ASSESSMENT | 3 | | 2.1 | SELECTION OF A TMDL ENDPOINT AND CRITICAL CONDITION | 3 | | 2.2 | DISCUSSION OF INSTREAM WATER QUALITY | 3 | | 2.2.1 | | 3 | | 2.2.2 | Analysis of Instream Water Quality Monitoring Data | 9 | | <u>SOUI</u> | RCE ASSESSMENT | 10 | | 3.1 | ASSESSMENT OF POINT SOURCES | 10 | | 3.2 | ASSESSMENT OF NONPOINT SOURCES | 10 | | 3.2.1 | LAND APPLICATION OF CHICKEN LITTER | 11 | | 3.2.2 | ACIDIC SOIL | 11 | | 3.2.3 | PINE NEEDLE DECAY | 11 | | 3.2.4 | Urban Development | 12 | | LINK | XING THE SOURCES TO THE ENDPOINT | 13 | | 4.1 | SOURCE REPRESENTATION | 13 | | 4.1.1 | LAND APPLICATION OF CHICKEN LITTER | 13 | | 4.1.2 | ACIDIC SOIL | 13 | | 4.1.3 | PINE NEEDLE DECAY | 13 | | 4.1.4 | 4 Urban Development | 13 | |--------------|--|----| | ALL | LOCATION | 14 | | | | | | 5.1 | WASTELOAD ALLOCATIONS | 14 | | 5.2 | LOAD ALLOCATIONS | 14 | | 5.3 | INCORPORATION OF A MARGIN OF SAFETY | 14 | | 5.4 | SEASONALITY | 15 | | CON | NCLUSION | 16 | | 6.1 | FUTURE MONITORING | 16 | | 6.2 | PUBLIC PARTICIPATION | 16 | | DEF | FINITIONS | 17 | | | | | | ABB | BREVIATIONS | 20 | | REF | TERENCES | 21 | | APP | PENDIX A | 22 | | TAB | BLES | | | 1 | pH monitoring stations for the Big Black River | 4 | | 2 | Canton Historical pH Data | 4 | | 3 | West Ambient Station pH Data | 5 | | 4 | Bovina Ambient Station pH Data | 7 | | 5 | Special Study pH Data | 8 | | 6 | pH Data Statistical Summary | 9 | | <u>F</u> IGU | <u>URES</u> | | | 1 | BIG BLACK RIVER LOCATION MAP | 1 | ## MONITORED SEGMENT IDENTIFICATION | Name: | Big Black River Segment 1 | |-------|---------------------------| | | | Waterbody ID: MSLBGBKRM1 Location: Near Canton: from highway 51/17 south of Pickens to confluence with Bear Creek County: Madison and Yazoo USGS HUC Code: 08060202 Length: 9 miles Use Impairment: Aquatic Life Support Cause Noted: Low pH Priority Rank: 69 Standards Variance: None Pollutant Standard: The normal pH of the waters shall be 6.5 to 9.0 and shall not be caused to vary more than 1.0 unit; however, should the natural background pH be outside the 6.5 to 9.0 limits, it shall not be changed more than 1.0 unit unless after the change the pH will fall within the 6.5 to 9.0 limits, and the Commission on Environmental Quality determines that there will be no detrimental effect on stream usage as a result of the greater pH change. TMDL Report: This segment has data that indicate an apparent natural cyclic occurrence of low pH each spring. ## **EXECUTIVE SUMMARY** One segment of the Big Black River has been placed on the Mississippi 1998 Section 303(d) List of Waterbodies as an impaired waterbody segment due to low pH. pH is defined as a measure of acidity and alkalinity of a solution that is a number on a scale on which a value of 7 represents neutrality and lower numbers indicate increasing acidity and higher number increasing alkalinity and on which each unit of change represents a tenfold change in acidity or alkalinity and that is the negative logarithm of the effective hydrogen-ion concentration or hydrogen-ion activity in gram equivalents per liter of the solution. The applicable state standard specifies the normal pH of the waters shall be 6.5 to 9.0 and shall not be caused to vary more than 1.0 unit. However, should the natural background pH be outside the 6.5 to 9.0 limits, it shall not be changed more than 1.0 unit unless after the change the pH will fall within the 6.5 to 9.0 limits. And, the Commission determines that there will be no detrimental effect on stream usage as a result of the greater pH change. A review of the available monitoring data for the watershed indicates that the levels of pH are sometimes below the normal limits. However, these data indicate that the level of impairment is almost always within 1 pH unit of the standard and is apparently caused by natural conditions. The Big Black River flows approximately 300 miles in a southwestern direction from its headwaters until it reaches the Mississippi River south of Vicksburg. The watershed lies completely within Mississippi. This TMDL Report has been developed for the section of the Big Black River found on the monitored portion of the Mississippi 1998 Section 303(d) List. The pH loading estimates from nonpoint sources in the watershed were from the watershed runoff, the soil acidity, and the acidic contribution from pine needles. There are several active NPDES Permitted discharge located in the watershed and included in the study. Each of these permitted facilities has a pH limit requirement in their NPDES Permit. These are listed in appendix A. The purpose of this TMDL is to report on the study to determine if the pH levels found in the stream are indeed caused by a controllable source or by natural background. The study of low pH in these watersheds indicates that the variance to the standard is due to natural, uncontrollable sources. ## INTRODUCTION ## 1.1 Background The identification of waterbodies not meeting their designated use and the development of total maximum daily loads (TMDLs) for those waterbodies are required by Section 303(d) of the Clean Water Act and the Environmental Protection Agency's (EPA) Water Quality Planning and Management Regulations (40 CFR part 130). The TMDL process is designed to restore and maintain the quality of those impaired waterbodies through the establishment of pollutant specific allowable loads. The pollutant of concern for this TMDL is slightly acidic water as indicated by measurements of low pH. The Mississippi Department of Environmental Quality (MDEQ) has a segment of the Big Black River as being impaired due to low pH as reported in the Mississippi 1998 Section 303(d) List of Waterbodies. The segment was originally listed because monitoring data showed that the pH level was not within the water quality standards' approved range. However, for this indicator, natural background contributions do not necessarily indicate impairment. The purpose of this TMDL is to report on the study to determine if the pH levels found in the stream segments are indeed caused by a controllable source or by natural background. The section of the Big Black River in Madison County and Yazoo County is shown in Figure 1. The Big Black River Basin lies totally within the state and is composed of 3,400 square miles. The basin is 155 miles long, averages 22 miles in width and has approximately 6,360 linear miles of river and streams. This basin originates in north central Mississippi and flows southwesterly to the Mississippi River. The Big Black River itself enters the Mississippi River just south of Vicksburg after flowing approximately 300 miles. Major tributaries to the Big Black River include Big Bywy Ditch, Zilpha Creek, Apookta Creek, Doaks Creek, Bear Creek, Bogue Chitto Creek and Fourteen Mile/Bakers Creek. The basin is
sparsely populated and is hilly to gently rolling and largely forested. However, significant amounts of cattle ranching and farming are present. Oil and gas production is a major industry in the area. The Big Black River Basin does not have large-scale development and most of its tributaries are wild and undeveloped, and thus are in a relatively natural condition.¹ Generally, the Big Black River and most of its tributaries, especially in the northern part of the basin, carry large amounts of suspended sediment and are very turbid most of the time. Some of the streams in the basin are muddy and slow flowing, while others have relatively clear water and are swift with sandy bottoms. Overall, the water quality in the basin is rated as fair.² ¹ Mississippi 1998 Water Quality Assessment, Federal Clean Water Act Section 305(b) Report, p. 169. ² Ibid. ## 1.2 Applicable Waterbody Segment Use Designated beneficial uses and water quality standards are established by the *State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters* regulations. The designated use for Big Black River as defined by the regulations is Fish and Wildlife. ## 1.3 Applicable Waterbody Segment Standard The water quality standard applicable to the use of the waterbody and the pollutant of concern is defined in the *State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters*. The standard states that the normal pH of the waters shall be 6.5 to 9.0 and shall not be caused to vary more than 1.0 unit. However, should the natural background pH be outside the 6.5 to 9.0 limits, it shall not be changed more than 1.0 unit unless after the change the pH will fall within the 6.5 to 9.0 limits. And the Commission determines that there will be no detrimental effect on stream usage as a result of the greater pH change. It is our opinion that the Big Black River should be covered by the 1.0 unit allowable for the natural background exclusion. ## TMDL ENDPOINT AND WATER QUALITY ASSESSMENT ## 2.1 Selection of a TMDL Endpoint and Critical Condition One of the major components of a TMDL is the establishment of instream numeric endpoints, which are used to evaluate the attainment of acceptable water quality. Instream numeric endpoints, therefore, represent the water quality goals that are to be achieved by implementing the load and wasteload reductions specified in the TMDL. The endpoints allow for a comparison between observed instream conditions and conditions that are expected to restore designated uses. The instream target for low pH is that the normal pH of the waters shall be 6.5 to 9.0 and shall not be caused to vary more than 1.0 unit. However, should the natural background pH be outside the 6.5 to 9.0 limits, it shall not be changed more than 1.0 unit unless after the change the pH will fall within the 6.5 to 9.0 limits. The language in our standard is difficult to interpret, however, the 1.0 unit allowance for natural background should apply to each of these segments. If that is the case, there is no longer any impairment for low pH. Because pH variance may be attributed to both nonpoint and point sources, the critical condition used for studying the stream response was represented by a multi-year period. Critical conditions for waters impaired by nonpoint sources generally occur during periods of wet-weather and high surface runoff. But, critical conditions for point source dominated systems generally occur during low-flow, low-dilution conditions. ## 2.2 Discussion of Instream Water Quality Water quality data available for the monitored segment of the Big Black River show that low levels of pH have historically been found in the stream. There are several ambient stations operated by MDEQ that have pH monitoring data available, however, only the historical station shows an impairment for low pH. The data indicate a low pH cycle each spring. The first significant spring rains apparently cause this phenomenon. There is not enough information available to specifically determine the cause of the low pH in the waterbody segment. It is our contention that the natural processes and soil conditions would lead to the conclusion that this low pH is caused by natural sources. This is further substantiated by the cyclic nature of the data. #### 2.2.1 Inventory of Available Water Quality Monitoring Data The State's 1998 Section 305(b) Water Quality Assessment Report was reviewed to assess water quality conditions and data available for the watershed. According to the report, the Big Black River is partially supporting the use of Aquatic Life Support for low pH in one segment. By including more recent data not available when the 1998 305(b) report was completed, the Big Black River is now fully supporting. These conclusions were based on instantaneous data collected at the stations listed in Table 1. Data collected at these stations are listed below in Tables 2 - 5. Table 2 contains the historical data that is responsible for the original listing of this segment. The data are extremely limited in quantity. There are 2 out of 9 violations (22%) which lead to the partially supporting call on the 1996 and 1998 Section 303(d) list. Table 3 lists the current data available at the ambient station near West, Mississippi. This station is located approximately 60 miles above the impaired segment. There are 9 out of 59 violations (15%) which taken alone would indicate a partially supporting segment. Table 4 lists the data from the ambient station near Bovina. This station is approximately 60 miles below the segment. There are no violations reported at this station. And finally, table 5 lists the data from MDEQ's most recent special study of the Big Black River. In 1999, a contractor was hired to study the water quality in the Big Black River on a bi-monthly basis at 5 sites along the length of the river. These data show no impairment (4.7% violation) for the entire stretch of the river. When viewed as a whole, the data indicate no significant violation (8.3%) of the pH standard. Table 1 pH monitoring stations for the Big Black River | Segment Name | Location ID | Study Type | Location | | |-----------------|-------------|-----------------|-----------------------------------|--| | Big Black River | Kilmichael | Special Study | Headwaters in Montgomery County | | | | | | near Kilmichael | | | Big Black River | West | Ambient Station | Near West Mississippi between | | | | | (current) | Holmes and Attala County | | | Big Black River | West | Special Study | Near West Mississippi between | | | | | | Holmes and Attala County | | | Big Black River | Goodman | Special Study | Near Pickens at Highway 51/17 | | | Big Black River | Canton | Ambient Station | Near the confluence of Bear Creek | | | | | (historical) | in Madison County | | | Big Black River | Bovina | Ambient Station | Old Highway 80 Bridge near Bovina | | | | | (current) | in Warren County | | | Big Black River | Bovina | Special Study | Old Highway 80 Bridge near Bovina | | | | | | in Warren County | | | Big Black River | Reganton | Special Study | Near Reganton | | Table 2 Canton Historical pH Data | Date | Canton pH | |----------|-----------| | 03/08/95 | 6.8 | | 07/12/95 | 8.0 | | 09/11/95 | 7.1 | | 11/08/95 | 8.3 | | 01/08/96 | 5.0 | | 03/05/96 | 7.7 | | 05/06/96 | 6.4 | | 07/10/96 | 7.3 | | 09/10/96 | 7.4 | Table 3 West Ambient Station pH Data | Table 3 Wes | st Ambient Stati | |-------------|------------------| | Date | West pH | | 12/17/96 | 7.2 | | 01/14/97 | 7.2 | | 02/19/97 | 6.7 | | 03/18/97 | 7.3 | | 04/23/97 | 7.3 | | 05/15/97 | 7.1 | | 06/17/97 | 7.0 | | 07/15/97 | 6.9 | | 08/11/97 | 7.2 | | 09/08/97 | 7.2 | | 10/08/97 | 7.4 | | 11/12/97 | 7.3 | | 12/09/97 | 6.8 | | 01/12/98 | 6.2 | | 02/11/98 | 6.4 | | 03/16/98 | 6.4 | | 04/15/98 | 6.8 | | 06/11/98 | 6.4 | | 07/13/98 | 6.5 | | 08/12/98 | 6.6 | | 09/08/98 | 7.0 | | 10/13/98 | 7.0 | | 11/09/98 | 7.0 | | 12/09/98 | 6.7 | | 01/19/99 | 6.3 | | 02/09/99 | 6.4 | | 03/15/99 | 6.4 | | 04/05/99 | 6.2 | | 05/06/99 | 6.9 | | 06/07/99 | 6.8 | | 07/08/99 | 6.9 | | 08/04/99 | 7.0 | | 09/07/99 | 6.8 | | 10/06/99 | 7.4 | | 11/04/99 | 7.2 | | 11/09/99 | 7.3 | | 11/22/99 | 7.2 | | 12/07/99 | 7.4 | | 12/21/99 | 7.1 | Table 3 Continued West Ambient Station Data | 01/04/00 | 7.0 | |----------|-----| | 01/18/00 | 6.9 | | 02/01/00 | 6.5 | | 02/08/00 | 6.9 | | 02/15/00 | 6.7 | | 02/29/00 | 7.3 | | 03/14/00 | 6.6 | | 03/30/00 | 7.1 | | 04/11/00 | 6.3 | | 04/25/00 | 7.0 | | 05/09/00 | 6.8 | | 05/09/00 | 7.0 | | 05/23/00 | 7.1 | | 06/06/00 | 7.2 | | 06/07/00 | 7.3 | | 06/20/00 | 6.9 | | 07/05/00 | 7.1 | | 09/13/00 | 6.9 | | 10/11/00 | 7.4 | | 11/16/00 | 6.9 | Table 4 Bovina Ambient Station pH Data | Date | Bovina pH | |----------|-----------| | 12/11/96 | 7.4 | | 01/07/97 | 7.6 | | 02/11/97 | 7.3 | | 03/11/97 | 7.3 | | 04/17/97 | 7.1 | | 05/13/97 | 7.0 | | 06/05/97 | 7.2 | | 07/02/97 | 7.1 | | 08/06/97 | 7.6 | | 09/03/97 | 7.4 | | 10/09/97 | 7.5 | | 11/04/97 | 7.0 | | 12/02/97 | 6.6 | | 01/07/98 | 7.1 | | 02/10/98 | 7.0 | | 03/05/98 | 6.9 | | 04/14/98 | 7.3 | | 06/10/98 | 6.9 | | 07/09/98 | 7.7 | | 08/11/98 | 7.3 | | 09/02/98 | 7.4 | | 10/12/98 | 7.6 | | 11/03/98 | 7.6 | | 12/03/98 | 7.4 | | 01/13/99 | 6.5 | | 02/04/99 | 6.5 | | 03/02/99 | 7.0 | | 03/31/99 | 7.2 | | 05/04/99 | 7.3 | | 06/03/99 | 7.4 | | 07/06/99 | 7.0 | | 09/01/99 | 7.3 | | 10/04/99 | 7.2 | Table 5 Special Study pH Data | Date | Kilmichael | West | Goodman | Bovina | Reganton | |----------|------------|------|---------|--------|----------| | 11/09/99 | 7.2 | 7.3 | 7.3 | 7.5 | 7.3 | | 11/22/99 | 6.9 | 7.2 | 7.3 | 7.6 | 7.4 | | 12/07/99 | 7.4 | 7.4 | 7.4 | 7.7 | 7.2 | | 12/21/99 | 7.3 | 7.1 | 7.2 | 7.6 | 7.3 | | 01/04/00 | 7.5 | 7.0 | 7.2 | 7.7 | 7.4 | | 01/18/00 | 7.3 | 6.9 | 7.0 | 7.3 | 6.6 | | 02/01/00 | 5.6 | 6.5 | 6.7 | 7.7 | 7.3 | | 02/15/00 | 6.8 | 6.7 | 7.2 | 7.7 | 7.1 | | 02/29/00 | 7.4 | 7.3 | 7.4 | 7.7 | 6.6 | | 03/14/00 | 6.8 | 6.6 | 6.5 | 6.9
| 6.7 | | 03/30/00 | 7.6 | 7.1 | 7.1 | 7.3 | 6.5 | | 04/11/00 | 6.5 | 6.3 | 6.3 | 6.5 | 6.5 | | 04/25/00 | 7.5 | 7.0 | 7.0 | 7.4 | 6.9 | | 05/09/00 | 7.4 | 7.0 | 6.9 | 7.4 | 7.2 | | 05/23/00 | 7.6 | 7.1 | 7.3 | 7.5 | 7.5 | | 06/06/00 | 7.6 | 7.2 | | 7.6 | 7.2 | | 06/20/00 | 7.1 | 6.9 | 7.3 | 7.3 | 7.4 | #### 2.2.2 Analysis of Instream Water Quality Monitoring Data A statistical summary of the water quality data discussed above is presented in Table 3. The percent exceedance was calculated by dividing the number of exceedances by the total number of samples and does not represent the amount of time that the water quality was in violation. Each of the data sets for the stations is shown in the previous tables and charts. The data for Big Black River are within the 10% limit to call the water fully supporting according to the current water quality standards and this water's impairment listing in the 303(d) list should be delisted. Table 6 pH Data Statistical Summary | Segment Name | pH Data Points | Violations | Percent
Violations | |-------------------|----------------|------------|-----------------------| | Big Black River – | 9 | 2 | 22.2% | | Canton | | | | | Big Black River – | 92 | 9 | 9.7% | | Ambient Program | | | | | Big Black River – | 84 | 4 | 4.8% | | Special Study | | | | #### SOURCE ASSESSMENT It is recognized that many of the sources for low pH in the stream are natural. These sources are considered uncontrollable, and this TMDL does not attempt to address any type of controlling strategy for these sources. The TMDL evaluation summarized in this report examined all known controllable and uncontrollable pHaltering sources in the Big Black River Watershed. In evaluation of the sources, loads were characterized by the best available information, monitoring data, literature values, and local management activities. This section documents the available information and interpretation for the analysis. #### 3.1 Assessment of Point Sources Point sources have their greatest potential impact on water quality during periods of low-flow. Thus, a careful evaluation of point sources was necessary in order to quantify the degree of impairment present during the low-flow, critical-condition period. Appendix A lists the all of the dischargers in the watershed, along with the NPDES Permit number. All NPDES Permits shown in Appendix A include requirements for pH limits to meet water quality standards. Any future permits will also include this pH requirement. ## 3.2 Assessment of Nonpoint Sources There are potential nonpoint sources from storm water runoff that could contribute to an alteration of pH in Big Black River, including: - ◆ Land Application of Chicken Litter - ♦ Acidic Soil - ♦ Pine Needle Decay - ♦ Urban Development The 3,400 square mile drainage area of the Big Black River contains many different landuse types, including urban, forests, cropland, pasture, barren, and wetlands. The watershed is very rural in nature however; it contains a portion of the city of Jackson and several smaller cities. Forest is the dominant landuse within this watershed. Septic systems have a potential to deliver pH-altering loads (either higher pH or lower pH) to surface waters due to malfunctions, failures, and direct pipe discharges. Household chemicals and waste products could be introduced into the environment by a failing septic system. Properly operating septic systems treat wastewater and dispose of the water through a series of underground field lines. The water is applied through these lines into a rock substrate, thence into underground absorption. The systems can fail when the field lines are broken, or when the underground substrate is clogged or flooded. A failing septic system's discharge can reach the surface, where it becomes available for wash-off into the stream. Another potential problem is a direct bypass from the system to a stream. In an effort to keep the water off the land, pipes are occasionally placed from the septic tank or the field lines directly to the creek, which can be represented as a point source. The nonpoint source contribution from septic tanks is un-quantifiable for pH; however, controlling this source of pollution is a goal of this TMDL. #### 3.2.1 Land Application of Chicken Litter In the Big Black River Basin processed manure from chicken houses could be a source of pH alteration in the stream. Poultry litter is a potential contributor of a pH-altering load to streams in the watershed when a rain event washes a portion of it to a receiving waterbody. It is assumed that poultry litter from chicken houses is applied to the available pastureland. While there are some alternative uses of poultry litter, such as utilization as cattle feed, almost all of the litter in the state is currently used for fertilizer. #### 3.2.2 Acidic Soil Soil acidity has long been reported as a major fertility problem in the southeastern United States. To combat this problem, farmers typically apply appropriate amounts of lime to counteract the acidity, in order to increase crop production. In 1957, 216,012 tons of lime were used in Mississippi; however, by 1979 800,000 tons of lime were used on agricultural fields in Mississippi (Vanderford, 1975). Still, this was only 40% of the amount of lime necessary to adequately combat the historically acid soils for increased crop production. A great deal of water infiltrates through the soils of humid regions such as the coastal areas of Mississippi. As water moves through the soils, hydrogen ions combine with carbon dioxide and other compounds to form weak acids, such as carbonic acid. When rainfall events occur, these weak acids will leach the lime from the soils. As this leaching from rain water occurs, calcium and other bases are gradually removed, leaving soils more acidic than before.³ #### 3.2.3 Pine Needle Decay Vast numbers of coniferous trees within the basin also contribute to the acidity of surrounding waterbodies due to the decay of the pine needles. Duffy *et al.* (1989) examined the nutrient flux in a pine forest following simulated rainfall. The pH of their simulated rainfall ranged from 3.94 - 5.18 on four different plots; however, the pH of the ensuing runoff water ranged from 4.34 - 5.0. Assuming you have a rainfall, which itself is slightly acidic, encountering acidic pine needles, which then travels though acidic soils, one can safely deduce the surrounding receiving water will likewise be acidic in nature.⁴ ³ National Sedimentation Laboratory, Water Quality and Ecological Processes Research Unit, Report on the Causes of acid pH in the Yazoo Basin, Dr. Charles Cooper, 2000. 4 Ibid. ## 3.2.4 Urban Development Urban areas include land classified as urban and barren. Even though only a small percentage of the watershed is classified as urban, the contribution of the urban areas to pH alteration in Big Black River was considered. Stormwater runoff contributions from urban areas may come from construction sites, residential subdivisions, and runoff contribution from improper disposal of materials such as household toxic materials. Due to the low percentage of urban area in the watershed, this source of lower pH is considered to be very minor. ## LINKING THE SOURCES TO THE ENDPOINT Establishing the relationship between the instream water quality target and the source loading is a critical component of TMDL development. It allows for the evaluation of management options that will achieve the desired source load reductions. The link can be established though a range of techniques, from qualitative assumptions based on sound scientific principles to sophisticated modeling techniques. Ideally, the linkage will be supported by monitoring data that allow the TMDL developer to associate certain waterbody responses to flow and loading conditions. ## 4.1 Source Representation Both point and nonpoint sources were represented in this study. There were several NPDES Permitted facilities in the Big Black River Watershed. These are shown in Appendix A. #### 4.1.1 Land Application of Chicken Litter The contribution due to land application of poultry litter was considered in the Big Black River Watershed nonpoint source assessment. Variable monthly loading rates of litter are applied to pastureland. This litter then becomes available for surface water runoff during storm events. This could be a controllable source of pH alteration in the watershed. #### 4.1.2 Acidic Soil A great deal of water infiltrates through the soils of humid regions. As water moves through the soils, hydrogen ions combine with carbon dioxide and other compounds to form weak acids, such as carbonic acid. When rainfall events occur, these weak acids will leach the lime from the soils. As this leaching from rain water occurs, calcium and other bases are gradually removed, leaving soils more acidic than before. These sources are considered uncontrollable and are not accounted for in this TMDL. #### 4.1.3 Pine Needle Decay Vast numbers of coniferous trees within the basin also contribute to the acidity of surrounding waterbodies due to the decay of the pine needles. Assuming you have a rainfall, which itself is slightly acidic, encountering acidic pine needles, which then travels though acidic soils, one can safely deduce the surrounding receiving water will likewise be acidic in nature. These sources are considered uncontrollable and are not accounted for in this TMDL. #### **4.1.4** Urban Development The Big Black River watershed contains many small urban areas. However, overall the area remains sparsely populated. The watershed can be considered rural and urban. The pH-altering sources are controllable; however, there is only a very limited amount of urban area in the watershed. ## **ALLOCATION** The allocation for this TMDL involves a wasteload permit limits for NPDES point sources necessary for attainment of water quality standards in the Big Black River. Point source contributions enter the
stream directly. Nonpoint sources contributions occur as a result of rainfall events. This TMDL will only consider allocations for controllable sources of low pH. #### 5.1 Wasteload Allocations The contribution of point sources was considered on a watershed basis. Effluent pH levels from each point source in the Big Black River (see Appendix A) shall be 6.5 to 9.0 standard units and shall not cause the pH in the receiving waters to vary more than 1.0 standard unit. Regarding implementation of these allocations to the NPDES permits, MDEQ will use its Reasonable Potential Procedures to determine appropriate monitoring requirements and/or limitations. #### **5.2** Load Allocations For each of the 303(d)-listed segments of the Big Black River, the pH of waters originating from nonpoint sources shall be 6.5 to 9.0 standard units and shall not cause the receiving waters to vary more than 1.0 standard unit. Nonpoint loading due to acidic soil, pine needle decay, and urban development are included in the load allocation. This TMDL has been completed for the acidic property of the water. pH is an indicator of the acidic or alkalinity properties of water. It is not a classic pollutant. Control of the pH range can be achieved by dilution or by source load manipulation. One step that should be encouraged by this TMDL is the reduction of failing septic tanks in the watershed. This reduction in septic tank failures will lead to a reduction in the overall pollution reaching the Big Black River. This might be achieved by supporting BMP projects that promote education projects that encourage homeowners to properly maintain their septic tanks by routinely pumping them out, ensuring that improper chemicals are not disposed of in the septic tank, repairing broken field lines, and properly maintaining the effluent from individual onsite wastewater treatment plants. ## 5.3 Incorporation of a Margin of Safety The margin of safety shall account for the lack of knowledge concerning the relationship between pollutant loads and the quality of the receiving waterbody. The wasteload allocation and load allocation suggested in sections 5.1 and 5.2 of this report establish that effluent from all point sources and waters originating from all nonpoint sources must individually meet the water quality standards for pH. As long as pH levels from point sources and nonpoint sources are consistent with the specified wasteload allocation and load allocation, the pH in the 303(d)-listed segment of the Big Black River will be consistent with water quality standards. Therefore, a margin of safety for these pH TMDLs has been considered but was determined to be unnecessary, because there is no lack of knowledge concerning the relationship between the allocations to pollutant loads and the resulting quality of the receiving waters. ## 5.4 Seasonality The charts of the data indicate a cyclic trend to pH in the stream. The theory is that the coniferous trees shed their needles, which decay and with springtime stormwater runoff alter the pH in the stream. This uncontrollable natural cyclic process will not be address by this TMDL. Seasonality is classically thought of as differing approaches to the pollutant based on variations in temperature or in rainfall. Seasonality for this within this TMDL is not based on changes between the seasons, temperature fluctuations, or rainfall events. By looking at several years worth of data, a cycle or trend is established that shows lower pH in the springtime. This corresponds to early rainfall events in the spring bringing the first acidic load from decaying coniferous trees. It is our contention that this is a natural event and is uncontrollable. ## **CONCLUSION** The reduction scenario used in this TMDL included requiring all NPDES Permitted dischargers to meet water quality standards for pH. Also another goal of the TMDL is reducing the pollution load from failing septic tanks in the watershed. Appendix A lists the dischargers in this watershed, along with the NPDES Permit number. The TMDL will not impact existing or future NPDES Permits as long as the effluent meets water quality standards for pH. MDEQ will not approve any NPDES Permit application that does not plan to meet water quality standards for pH. CWA Section 319 Nonpoint Source (NPS) Grants may fund these projects. MDEQ produced guidance for future Section 319 project funding will encourage NPS restoration projects that attempt to address TMDL related issues within Section 303(d)/TMDL watersheds in Mississippi. This TMDL is for low pH. This is an indicator of water quality and is not in and of itself a pollutant. Manipulation of the pH value in the context of a TMDL calculation is meaningless. However, the effort to reduce controllable sources of lower pH producing pollution in the stream wherever possible is meaningful. That controllable source reduction is the goal for this TMDL. ### **6.1** Future Monitoring MDEQ has adopted the Basin Approach to Water Quality Management, a plan that divides Mississippi's major drainage basins into five groups. During each yearlong cycle, MDEQ resources for water quality monitoring will be focused on one of the basin groups. During the next monitoring phase in the Big Black River Basin, the Big Black River will receive additional monitoring to identify any change in water quality. These identified monitoring stations are currently included with our ambient monitoring network and monitoring will continue at these sites. Additionally, by completion of this TMDL, NPS projects proposed for this watershed that address pH will receive priority consideration for future Section 319 funding. ## 6.2 Public Participation This TMDL will be published for a 30-day public notice. During this time, the public will be notified by publication in the statewide newspaper. The public will be given an opportunity to review the TMDL and submit comments. At the end of the 30-day period, MDEQ will determine the level of interest in the TMDL and make a decision on the necessity of holding a public hearing. If a public hearing is deemed appropriate, the public will be given a 30-day notice of the hearing to be held at a location near the watershed. That public hearing would be an official hearing of the Mississippi Commission on Environmental Quality, and would be transcribed. All comments received during the public notice period and at any public hearings become a part of the record of this TMDL. All comments will be considered in the ultimate approval of this TMDL and for submission of this TMDL to EPA Region IV for final approval. #### **DEFINITIONS** **Ambient stations:** a network of fixed monitoring stations established for systematic water quality sampling at regular intervals, and for uniform parametric coverage over a long-term period. **Assimilative capacity**: the capacity of a body of water or soil-plant system to receive wastewater effluents or sludge without violating the provisions of the State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters and Water Quality regulations. **Background**: the condition of waters in the absence of man-induced alterations based on the best scientific information available to MDEQ. The establishment of natural background for an altered waterbody may be based upon a similar, unaltered or least impaired, waterbody or on historical pre-alteration data. **Calibrated model**: a model in which reaction rates and inputs are significantly based on actual measurements using data from surveys on the receiving waterbody. **Coniferous:** an order (Coniferales) of mostly evergreen trees and shrubs including forms (as pines) with true cones and other (as yews) with an arillate fruit. **Controllable Sources:** Sources of pollutants that can be modified or controlled with regulatory requirements and/or best management practices. **Critical Condition:** hydrologic and atmospheric conditions in which the pollutants causing impairment of a waterbody have their greatest potential for adverse effects. **Daily discharge**: the "discharge of a pollutant" measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in units of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement, the "daily average" is calculated as the average. **Designated Use:** use specified in water quality standards for each waterbody or segment regardless of actual attainment. **Discharge monitoring report:** report of effluent characteristics submitted by a NPDES Permitted facility. **Effluent standards and limitations**: all State or Federal effluent standards and limitations on quantities, rates, and concentrations of chemical, physical, biological, and other constituents to which a waste or wastewater discharge may be subject under the Federal Act or the State law. This includes, but is not limited to, effluent limitations, standards of performance, toxic effluent standards and prohibitions, pretreatment standards, and schedules of compliance. **Effluent**: treated wastewater flowing out of the treatment facilities. **Geometric mean:** the nth root of the product of n numbers. A 30-day geometric mean is the 30^{th} root of the product of 30 numbers. **Impaired Waterbody:** any waterbody that does not attain water quality standards due to an individual pollutant, multiple pollutants, pollution, or an unknown cause of impairment. **Land Surface Runoff:** water that flows into the receiving stream after application by rainfall or irrigation. It is a transport method for nonpoint source pollution from the land surface to the receiving stream. **Load allocation** (**LA**): the portion of a receiving water's loading capacity attributed to or assigned to nonpoint sources (NPS) or background
sources of a pollutant. **Loading**: the total amount of pollutants entering a stream from one or multiple sources. **Nonpoint Source:** pollution that is in runoff from the land. Rainfall, snowmelt, and other water that does not evaporate become surface runoff and either drains into surface waters or soaks into the soil and finds its way into groundwater. This surface water may contain pollutants that come from land use activities such as agriculture; construction; silviculture; surface mining; disposal of wastewater; hydrologic modifications; and urban development. **NPDES permit**: an individual or general permit issued by the Mississippi Environmental Quality Permit Board pursuant to regulations adopted by the Mississippi Commission on Environmental Quality under Mississippi Code Annotated (as amended) §§ 49-17-17 and 49-17-29 for discharges into State waters. **pH:** a measure of acidity and alkalinity of a solution that is a number on a scale on which a value of 7 represents neutrality and lower numbers indicate increasing acidity and higher number increasing alkalinity and on which each unit of change represents a tenfold change in acidity or alkalinity and that is the negative logarithm of the effective hydrogen-ion concentration or hydrogen-ion activity in gram equivalents per liter of the solution. **Point Source:** pollution loads discharged at a specific location from pipes, outfalls, and conveyance channels from either wastewater treatment plants or industrial waste treatment facilities. Point sources can also include pollutant loads contributed by tributaries to the main receiving stream. **Pollution**: contamination, or other alteration of the physical, chemical, or biological properties, of any waters of the State, including change in temperature, taste, color, turbidity, or odor of the waters, or such discharge of any liquid, gaseous, solid, radioactive, or other substance, or leak into any waters of the State, unless in compliance with a valid permit issued by the Permit Board. **Publicly Owned Treatment Works (POTW)**: a waste treatment facility owned and/or operated by a public body or a privately owned treatment works which accepts discharges which would otherwise be subject to Federal Pretreatment Requirements. **Scientific Notation (Exponential Notation)**: mathematical method in which very large numbers or very small numbers are expressed in a more concise form. The notation is based on powers of ten. Numbers in scientific notation are expressed as the following: $4.16 \times 10^{\circ}(+b)$ and $4.16 \times 10^{\circ}(-b)$ [same as 4.16E4 or 4.16E-4]. In this case, b is always a positive, real number. The $10^{\circ}(+b)$ tells us that the decimal point is b places to the right of where it is shown. The $10^{\circ}(-b)$ tells us that the decimal point is b places to the left of where it is shown. For example: $2.7X10^4 = 2.7E + 4 = 27000$ and $2.7X10^{-4} = 2.7E - 4 = 0.00027$. **Sigma** (S): shorthand way to express taking the sum of a series of numbers. For example, the sum or total of three amounts 24, 123, 16, (\mathbf{d}_1 , \mathbf{d}_2 , \mathbf{d}_3) respectively could be shown as: $$\mathbf{S}\mathbf{d}_{i} = \mathbf{d}_{1} + \mathbf{d}_{2} + \mathbf{d}_{3} = 24 + 123 + 16 = 163$$ **Total Maximum Daily Load or TMDL**: the calculated maximum permissible pollutant loading to a waterbody at which water quality standards can be maintained. **Regression Coefficient:** an expression of the functional relationship between two correlated variables that is often empirically determined from data, and is used to predict values of one variable when given values of the other variable. **Waste**: sewage, industrial wastes, oil field wastes, and all other liquid, gaseous, solid, radioactive, or other substances which may pollute or tend to pollute any waters of the State. Wasteload allocation (WLA): the portion of a receiving water's loading capacity attributed to or assigned to point sources of a pollutant. Water Quality Standards: the criteria and requirements set forth in *State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters*. Water quality standards are standards composed of designated present and future most beneficial uses (classification of waters), the numerical and narrative criteria applied to the specific water uses or classification, and the Mississippi antidegradation policy. Water quality criteria: elements of State water quality standards, expressed as constituent concentrations, levels, or narrative statements, representing a quality of water that supports the present and future most beneficial uses. Waters of the State: all waters within the jurisdiction of this State, including all streams, lakes, ponds, wetlands, impounding reservoirs, marshes, watercourses, waterways, wells, springs, irrigation systems, drainage systems, and all other bodies or accumulations of water, surface and underground, natural or artificial, situated wholly or partly within or bordering upon the State, and such coastal waters as are within the jurisdiction of the State, except lakes, ponds, or other surface waters which are wholly landlocked and privately owned, and which are not regulated under the Federal Clean Water Act (33 U.S.C.1251 et seq.). # **ABBREVIATIONS** | Seven-Day Average Low Stream Flow with a Ten-Year Occurrence Per | | 7Q10 | |--|-------|-------| | NS Better Assessment Science Integrating Point and Nonpoint Sour | S | BASIN | | Best Management Pract | | BMP | | | | CWA . | | Discharge Monitoring Rep | | DMR | | Environmental Protection Age | | EPA | | | | GIS | | | | HUC | | Load Allocat | | LA | | IS | | MARIS | | Q | | MDEQ | | | | MOS | | S | | NRCS. | | ES | | NPDES | | /I | | NPSM. | | | | RF3 | | | ••••• | USGS | | | | WLA | ## REFERENCES Baird, J.V. 1980. Regional reviews of the status and opportunities for aglime use: Southeastern United States. National Conference on Agricultural Limestone, Nashville, Tennessee. p. 19. Cooper, C.M. and S.S. Knight. 1991. Water Quality cycles in two hill land streams subjected to natural, municipal, and non-point agricultural stresses in the Yazoo Basin of Mississippi, USA (1985 – 1987). *Verh. Internat. Verein. Limnol.* 24:1654-1663. Cooper, C.M. 2000. Causes of Acid pH in the Yazoo Basin, Report of the National Sedimentation Laboratory, Water Quality and Ecological Processes Research Unit, Oxford, Mississippi. Duffy, P.D., J.D. Schreiber, and L.L. McDowell. 1989. Nutrient flux through a loblolly pine forest floor using simulated rainfall. *Soil Sce. Soc. Am. J.* 53(3):951-957. Metccalf and Eddy. 1991. Wastewater Engineering: Treatment, Disposal, Reuse. 3rd Edition. McGraw-Hill, Inc., New York. MDEQ. 1994. Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification. Office of Pollution Control. MDEQ. 1995. State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters. Office of Pollution Control. MDEQ. 1998. *Mississippi List of Waterbodies, Pursuant to Section 303(d) of the Clean Water Act*. Office of Pollution Control. MDEQ. 1998. Mississippi 1998 Water Quality Assessment, Pursuant to Section 305(b) of the Clean Water Act. Office of Pollution Control. USEPA. 1998. Better Assessment Science Integrating Point and Nonpoint Sources, BASINS, Version 2.0 User's Manual. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. Vanderford, H.B. 1957. Managing Southern Soils. John Wiley and Sons, Inc., New York, NY. Vanderford, H.B. 1975. *Soils and Land Resources of Mississippi*. Mississippi Agricultural and Forestry Experiment Station, Mississippi State, MS. # Appendix A The following table lists the NPDES Permits currently in the EPA Permit Compliance System (PCS). These permits and limits contained herein are for permitted facilities in the Big Black River Basin. # NPDES Facilities in the Big Black River Basin $\,$ | NPDES | FACILITY NAME | COUNT | DISCHARGE STREAM | EFFLUENT STREAM | |-----------|--------------------------------|------------|---------------------------------|--------------------------------| | MS0000795 | BURROWS PAPER CORPORATION | HOLMES | BIG BLACK RIVER | T.PROCESS DISCH./NONCONTACT WA | | MS0020001 | KILMICHAEL POTW | MONTGOMERY | UNNAMED TRIB OF BIG BLACK RIVER | TREATED DOMESTIC WASTEWATER | | MS0020478 | BENTONIA POTW | YAZOO | BIG BLACK RIVER | TREATED DOMESTIC WASTERWATER | | MS0021024 | WINONA POTW | MONTGOMERY | HAYS CREEK | TREATED DOMESTIC WASTEWATER | | MS0021024 | WINONA POTW | MONTGOMERY | HAYS CREEK | TREATED DOMESTIC WASTEWATER | | MS0021032 | BOLTON POTW | HINDS | BAKER CREEK | TREATED DOMESTIC WASTEWATER | | MS0021130 | PICKENS POTW | HOLMES | BIG BLACK RIVER | TREATED DOMESTIC WASTEWATER | | MS0021164 | CLINTON POTW - NORTHEAST | HINDS | STRAIGHT FENCE CREEK | TREATED DOMESTIC WASTEWATER | | MS0021172 | CLINTON SOUTHEST | HINDS | BAKER'S CREEK | TREATED DOMESTIC WASTEWATER | | MS0021199 | CLINTON POTW - SOUTH CENTRAL | HINDS | BAKERS CREEK | TREATED DOMESTIC WASTEWATER | | MS0021504 | VAIDEN POTW | CARROLL | HURRICANE CREEK | MONTHLY MASS/FLOW TOTALS | | MS0022250 | COUNTRY OAKS MOBILE HOME PARK | HINDS | BAKERS CREEK | EFFLUENT | | MS0022250 | COUNTRY OAKS MOBILE HOME PARK | HINDS | BAKERS CREEK | EFFLUENT | | MS0023116 | MATHISTON POTW | WEBSTER | PIGEON ROOST CREEK | TREATED DOMESTIC WASTEWATER | | MS0023230 | CLINTON POTW - LOVETT | HINDS | STRAIGHT FENCE CREEK | TREATED DOMESTIC WASTEWATER | | MS0025003 | PRVWSD/LAKE HARBOR | MADISON | CANE CREEK | TREATED DOMESTIC WASTEWATER | | MS0025119 | FLORA POTW | MADISON | TOWN CREEK | TREATED DOMESTIC WASTEWATER | | MS0025852 | RAYMOND POTW - EAST | HINDS | | TREATED DOMESTIC WASTEWATER | | MS0025852 | RAYMOND POTW - EAST | HINDS | |
TREATED DOMESTIC WASTEWATER | | MS0025917 | RAYMOND POTW - WEST | HINDS | | TREATED DOMESTIC WASTEWATER | | MS0026921 | GOODMAN POTW | HOLMES | | TREATED DOMESTIC WASTEWATER | | MS0027324 | HOLMES COUNTY STATE PARK | HOLMES | BOX CREEK | EFFLUENT | | MS0027324 | HOLMES COUNTY STATE PARK | HOLMES | BOX CREEK | EFFLUENT | | MS0027324 | HOLMES COUNTY STATE PARK | HOLMES | BOX CREEK | EFFLUENT - MONTHLY | | MS0027324 | HOLMES COUNTY STATE PARK | HOLMES | BOX CREEK | EFFLUENT - MONTHLY | | MS0027863 | UTICA POTW - NORTH | HINDS | | TREATED DOMESTIC WASTEWATER | | MS0028631 | INTERNATIONAL PAPER CO | MADISON | BATCHELOR CREEK | OVERFLOW FROM LOG SPRAY POND | | MS0030295 | JACKSON POTW | HINDS | BOGUE CHITTO CREEK | TREATED DOMESTIC WASTEWATER | | MS0031208 | JACKSON INDUSTRIAL DEVELOPMENT | HINDS | FOURTEEN MILE CREEK | WASTEWATER DISCHARGE | | MS0031208 | JACKSON INDUSTRIAL DEVELOPMENT | HINDS | FOURTEEN MILE CREEK | WASTEWATER DISCHARGE | | MS0032816 | WEST POTW | HOLMES | BIG BLACK RIVER | TREATED DOMESTIC WASTEWATER | | MS0033081 | WEST MADISON UTILITY DISTRICT | MADISON | BIG BLACK RIVER | | | MS0033081 | WEST MADISON UTILITY DISTRICT | MADISON | BIG BLACK RIVER | TREATED EFFLUENT | | MS0034886 | AIR LIQUIDE AMERICA CORP | MADISON | BEAR CREEK | COOLING TOWER BLOWDOWN | | MS0034886 | AIR LIQUIDE AMERICA CORP | MADISON | BEAR CREEK | TREATED TRUCKWASH WASTEWATER | | MS0036277 | GULF STATES CANNERS INC | HINDS | LITTLE BAKERS CREEK | TREATED PROCESS & SANITARY WW | | MS0036374 | EDWARDS POTW - WEST | HINDS | BIG BLACK RIVER | TREATED DOMESTIC WASTEWATER | | MS0036382 | EDWARDS POTW - SOUTHEAST | HINDS | BAKERS CREEK | TREATED DOMESTIC WASTEWATER | | MS0036510 | MDOT I-55 S REST AREA-CARROLL | CARROLL | POACHAHALA CREEK | TOTAL FACILITY OUTFALL | |-----------|--------------------------------|---------|-------------------------------|------------------------------| | MS0036510 | MDOT I-55 S REST AREA-CARROLL | CARROLL | POACHAHALA CREEK | TOTAL FACILITY OUTFALL | | MS0036510 | MDOT I-55 S REST AREA-CARROLL | CARROLL | POACHAHALA CREEK | EFFLUENT - MONTHLY | | MS0036510 | MDOT I-55 S REST AREA-CARROLL | CARROLL | POACHAHALA CREEK | EFFLUENT - MONTHLY | | MS0036641 | MDOT I-55 N REST AREA - HOLMES | HOLMES | JORDAN CREEK | EFFLUENT - MONTHLY | | MS0036641 | MDOT I-55 N REST AREA - HOLMES | HOLMES | JORDAN CREEK | EFFLUENT - MONTHLY | | MS0037257 | SANSING MEAT SERVICE-MABEN | CHOCTAW | PIGEON ROOST CANAL | DISCHARGE FROM FINAL LAGOON | | MS0042447 | EUP0RA POTW | WEBSTER | LITTLE BLACK CREEK CANAL | QUARTERLY MASS TOTALS & CONC | | MS0042455 | CANTON HCR SITE | MADISON | BEAR CREEK | NORTH HCR FIELD | | MS0042455 | CANTON HCR SITE | MADISON | BEAR CREEK | SOUTHWEST HCR FIELD | | MS0042455 | CANTON HCR SITE | MADISON | BEAR CREEK | SOUTH HCR FIELD | | MS0042501 | WALTHALL POTW | WEBSTER | HAYES CREEK | TREATED DOMESTIC WASTEWATER | | MS0042811 | BOVINA ELEMENTARY SCHOOL | WARREN | CLEAR CREEK | DISCHARGE FROM OUTFALL 001A | | MS0042811 | BOVINA ELEMENTARY SCHOOL | WARREN | CLEAR CREEK | DISCHARGE FROM OUTFALL 001A | | MS0042811 | BOVINA ELEMENTARY SCHOOL | WARREN | CLEAR CREEK | EFFLUENT - MONTHLY | | MS0042811 | BOVINA ELEMENTARY SCHOOL | WARREN | CLEAR CREEK | EFFLUENT - MONTHLY | | MS0043401 | LAKE LORMAN POTW | HINDS | LIMEKILN CREEK | TREATED DOMESTIC WASTEWATER | | MS0043401 | LAKE LORMAN POTW | HINDS | LIMEKILN CREEK | TREATED DOMESTIC | | MS0044075 | FRENCH CAMP POTW | CHOCTAW | POPLAR CREEK | TREATED DOMESTIC WASTEWATER | | MS0044202 | CERES INDUSTRIAL INTERPLEX | WARREN | BIG BLACK RIVER | TOTAL FACILITY OUTFALL | | MS0044202 | CERES INDUSTRIAL INTERPLEX | WARREN | BIG BLACK RIVER | TOTAL FACILITY OUTFALL | | MS0044202 | CERES INDUSTRIAL INTERPLEX | WARREN | BIG BLACK RIVER | TOTAL FACILITY OUTFALL | | MS0045691 | INTERNATIONAL PAPER CO | HOLMES | INDIAN CREEEK | OVERFLOW FROM LOG SPRAY | | MS0045713 | J A LACOUR & COMPANY | MADISON | BACHELOR CREEK | CONDENSATE & BOILER BLOWDOWN | | MS0045896 | CLINTON POTW - SOUTHWEST | HINDS | LINDSEY CREEK | TREATED DOMESTIC WASTEWATER | | MS0046094 | MDOT HWY 49 REST AREA - HINDS | HINDS | LIME KILN CREEK | TREATED DOMESTIC WASTEWATER | | MS0046094 | MDOT HWY 49 REST AREA - HINDS | HINDS | LIME KILN CREEK | TREATED DOMESTIC WASTEWATER | | MS0046094 | MDOT HWY 49 REST AREA - HINDS | HINDS | LIME KILN CREEK | EFFLUENT - MONTHLY | | MS0046094 | MDOT HWY 49 REST AREA - HINDS | HINDS | LIME KILN CREEK | EFFLUENT - MONTHLY | | MS0046205 | MEMPHIS HARDWOOD FLOORING CO | HOLMES | BIG BLACK RIVER | OVERFLOW FROM LOG-SPRAY POND | | MS0046213 | MEMPHIS HARDWOOD FLOORING CO | YAZOO | TOWN CREEK | OVERFLOW FROM LOG-SPRAY POND | | MS0046213 | MEMPHIS HARDWOOD FLOORING CO | YAZOO | TOWN CREEK | WELL WATER OVERFLOW | | MS0046345 | SOUTHERN VITAL DATAPLEX | MADISON | TRIBUTARY OF BIG BLACK RIVER | TOTAL FACILITY DISCHARGE | | MS0046451 | CANTON POTW - LAKE CAROLINE NE | MADISON | PANTHER CREEK | TREATED DOMESTIC WASTEWATER | | MS0046469 | CANTON POTW - LAKE CAROLINE SW | MADISON | PERSIMMON CREEK | MONTHLY DISCHARGE | | MS0047619 | CLINTON BRIARS BIOLAC | HINDS | UN CREEK - BOGUE CHITTO CREEK | TREATED DOMESTIC WASTEWATER | | MS0048127 | DURANT POTW | HOLMES | BIG BLACK RIVER | TREATED DOMESTIC WASTEWATER | | MS0048127 | DURANT POTW | HOLMES | BIG BLACK RIVER | TREATED DOMESTIC WASTEWATER | | MS0049093 | PREMIUM TANK LINES INC | WARREN | | VEHICLE WASHING WASTEWATER | | | | | | | | MS0049221 | ERGON TRUCKING INCORPORATED | HOLMES | | TRUCK WASH WATER & STORMWATER | |-----------|-------------------------------|------------|---------------------------------|--------------------------------| | MS0049492 | R & S SWINE FARM | ATTALA | DRY CREEK | STORMWATER OFF APPL FIELDS | | MS0049603 | DJ'S FARMS | WEBSTER | PATT'S BRANCH | STORMWATER DISCHARGE APP FIELD | | MS0049913 | HANKINS LUMBER COMPANY INC | MONTGOMERY | UNNAMED TRIB HAYS CREEK | VEHICLE WASHING WASTEWATER | | MS0049999 | JOAMCA CHEMICAL PRODUCTS INC | MADISON | UNNAMED TRIBUTARY | TANK AND FLOOR RINSE WATER | | MS0050521 | PUMP AND SAVE #738 | HINDS | | TREATED GROUNDWATER | | MS0050679 | LARRY C BURTON SWINE | CHOCTAW | CRAPE CREEK | STORMWATER OFF APPL FIELDS | | MS0050687 | TOMMY GLANDNEY SWINE FACILITY | CHOCTAW | UNNAMED TRIB OF BIG BLACK RIVER | STORMWATER OFF APPL FIELDS | | MS0050806 | ROBERSON ENTERPRIES | WEBSTER | MOORES CREEK | STORMWATER RUNOFF APPL FIELDS | | MS0050920 | VAN JOHNSON SWINE FARM #2 | WEBSTER | RILLIN CREEK | STORMWATER RUNOFF APPL FIELDS | | MS0051292 | ALZO NOBEL COATINGS INC | HINDS | LITTLE BAKERS CREEK | NON CONTACT COOLING WATER | | MS0051438 | MALLARD LAKE UTILITIES INC | HINDS | FOURTEEN MILE CREEK | EFFLUENT - MONTHLY | | MS0051438 | MALLARD LAKE UTILITIES INC | HINDS | FOURTEEN MILE CREEK | EFFLUENT - MONTHLY | | MS0051772 | RAYMOND POTW - BIOLAC WWTF | HINDS | | TREATED DOMESTIC WASTEWATER | | MS0051896 | GEORGIA PACIFIC CORPORATION | WEBSTER | PIGEON ROOST CREEK | OVERFLOW FROM RECIRC. POND | | MS0052051 | JERRY MILNER SWINE FACILITY | MONTGOMERY | TRIB OF BIG BLACK RIVER CANAL | STORMWATER RUNOFF APPL FIELDS | | MS0052311 | CHARLES DONALD PULPWOOD INC | HOLMES | BIG BLACK RIVER | LOG SPRAY RECIRCULATION POND | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | STORM WATER - ACTIVE AREAS | | MS0054046 | MISSISSIPPI LIGNITE MINING CO | CHOCTAW | LITTY BYWY & MIDDLE BYWY | TREATED SANITARY WASTEWATER | | MSS050598 | DURANT SANITARY LANDFILL | HOLMES | TRIBUTARY OF INDIAN CREEK | GRAB SAMPLING | | MSS050598 | DURANT SANITARY LANDFILL | HOLMES | TRIBUTARY OF INDIAN CREEK | COMPOSITE SAMPLING |